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A model equation of Langevin type for the turbulent velocity field is constructed, 
in which the non-linear terms of the Navier-Stokes equation are replaced by a 
dynamical damping term and a random forcing term, with strength parameters 
determined by the past history of the energy speotrum. The model leads to a 
closed set of first-order differential equations in time for the evolution of two 
functions: the energy spectrum and the effective memory times for the interaction 
of mode triads. Invariance of the energy transfer to  random Galilean transforma- 
tion is achieved by using the interaction between solenoidal and compressive 
parts of a convected test field to determine the memory-time functions. The 
model equation is developed from the direct-interaction approximation as 
starting-point. At an intermediate stage, before the Galilean invariance is 
introduced, a model representation of Edwards’s (1964) theory is obtained which 
extends the latter to statistically non-stationary states. 

1. Motivation 
Leith and Kraichnan have recently given a formulation of the direct- 

interaction approximation that features a model equation, for the velocity field, 
involving both a dynamical damping term, with memory, and a forcing term 
which depends on a purely random field (Kraichnan 1970). The latter field has 
the same covariance function as the velocity field. The conservative energy 
transfer in the turbulence then appears in the statistical equations as a balance 
between the damping and forcing terms. This model amplitude equation shows 
immediately the realizability properties of the direct-interaction covariance 
function, and it is a logical starting-point for using the direct-interaction 
approximation for estimating the effects of subgrid scales on larger scales in 
computer simulations of turbulence. Moreover, the solutions of the Navier- 
Stokes equation can be expanded about those of the model equation, thereby 
giving a power series from which systematic, converging corrections to the 
direct-interaction approximation can be constructed (Kraichnan 1970). 

The work to be reported here started with an effort to modify the model 
amplitude equation to incorporate invariance to  random Galilean transforma- 
tions, along the lines of the Lagrangian-history direct-interaction approximation 
(Kraichnan 1965), and thereby give Kolmogorov’s Ic-g inertial-range spectrum 
instead of a k-g spectrum. The only successful kind of modification which 
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emerged was much more drastic than originally intended; it involved making 
the random forcing term a white noise in time, and, correspondingly, reducing 
the memory of the damping term to zero. At an intermediate stage, before the 
feature of Galilean invariance is incorporated, the resulting Langevin equation 
gives a model representation of Edwards's (1964) ' time-independent ' turbulence 
theory. The model amplitude equation a t  this stage is more properly called 
almost-Markovian, rather than Markovian, because the damping and forcing 
terms contain strength parameters that depend on past statistics of the velocity 
field. 

The direct-interaction approximation failsto give a k-* inertial-range spectrum, 
because it yields effective dynamical times, limiting the build up of triple corre- 
lations, that are the order of the convective dephasing times associated with 
advection by the energy-containing scales. In  the Lagrangian-history direct- 
interaction approximation, this deficiency was corrected by replacing the con- 
vective dephasing times by correlation times of the Lagrangian velocity field. 
In order to  be able to compute the Lagrangian correlations, it was necessary to 
expand the direct-interaction statistical equations to a substantially larger and 
more complicated set, involving both Eulerian and Lagrangian covariances. 

In  the present work, a simpler way of incorporating random Galilean invariance 
was sought, in order to make the final equations more practicable for computing 
flows with more complicated geometry than isotropic turbulence, and for com- 
puting systematic corrections to the basic approximation. In  the procedure 
finally adopted, the build-up times for energy-transferring triple correlations 
are measured by the times for dynamical interaction of the solenoidal and 
longitudinal parts of a random vector field convected by the turbulent velocity 
field. This permits a particularly simple set of closed equations in a purely 
Eulerian framework, and, as will be discussed later, does not seem any more 
arbitrary than the Lagrangian-history modification, once the necessity of an 
almost-Markovian model equation is assumed. 

2. Summary of the direct-interaction equations 

fluid in the Fourier-space form, 
Let us write the forced Navier-Stokes equation for an infinite, incompressible 

(a/at+vk')u,(k,t) = -+i&j,(k) C. ui(p,t)u,(q,t)+f,(k,t). (2.1) 
p+q=k 

Here the wave-vectors take all allowed values in a large cyclic box, and 

We include the solenoidal stirring force f$ in order to permit statistically stationary 
isotropic turbulence. Except where stated otherwise, we restrict f,(k, t )  to white 
noise in time and to isotropy in space: 

( L / 2 ~ ) 3  (f,(k, t )  fT(k, t ' ) )  = 2pij(k) Z ( k ,  t )  8(t - t '),  
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where ( ) denotes ensemble average. The direct-interaction model amplitude 
equation (Kraichnan 1970) is 

(8lat-t vk2) u& t )  + ~ ( k ,  t ,  S) ui(k, 8) ds = qi(k, t )  +f#, t) ,  (2.3) 

(2.4) 

(2.5) 

(2.6) 

sd 

ss, 

where P i ( k  t )  = - iejm(k) 2 Ej(P, t )  EL(% t ) ,  
n+q=k 

(Ei(k, t )  Ej?(kY t ’ ) )  = (E;(k, t )  &*(k, t’))  = (u,(k, t )  u,*(k, t’)), 

rl(k, 4 4 = 7rk b,,G(P, t ,  8) V(P, t ,  s)pqdiPdq, 

b,, = ( P F )  + z3)* 
Here the random fields & and are statistically independent of each other and 
of the initial velocity field ui(k, t = 0). U(k,  t, s) is the covariance scalar defined by 

(L/27~)~(u,(k,t)u;(k,s)) = &P,(k) U(k , t , s ) ,  (2.7) 

and G(k, t ,  s) is the average infinitesimal response scalar ‘Kraichnan 1964b). The 
A *  

integration J J is over all of the p ,  q plane where k, p ,  q can form a triangle, and 
A 

x, y, z are the cosines of the interior angles opposite k, p ,  and q. L is a side of the 
cyclic box, and we take L -+ 00. 

Both the fictitious forcing term qi(k, t )  and the damping function ~ ( k ,  t ,  s) 
depend on the velocity field only through ensemble averages. In  the case of an 
infinite ensemble, they are unaffected by the value of the velocity field in any 
typical realization, so that (2 .3 )  is effectively B linear dynamical equation for 
ui(k, t ) .  It follows immediately that the Green’s function scalar of (2.3) satisfies 

and that (2 .3)  yields the energy-balance and time-displaced covariance equations 

(ap t  + 2vk2) U ( k ,  t ,  t )  + 2 q(k, t ,  s) U(k,  s, t )  ds 

(apt+ vk2) U ( k ,  t ,  t ’ )  + q(k, t, 8) U ( k ,  s, t ’ )ds 1: 
Here a,,, = &[bkPq+ b,,]. Equations (2.8)-(2.10) are the direct-interaction 
statistical equations. 

The kinetic energy per unit mass is 

j m E ( k , t ) d k  0 = 2 r j m  0 U(k,t,t)k2dk. 

33-2 
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Equation (2.9) gives conservation of ensemble-averaged energy by the non- 
linear interaction. However, energy is not conserved individually in the separate 
flow realizations that make up the ensemble, since (2.3) portrays the interaction 
as a steady dynamical damping competing with a fluctuating fictitious driving 
term. 

The failure of the direct-interaction statistical equations (2.8)-(2.10) to keep 
the invariance properties of the Navier-Stokes equation under random Galilean 
transformations (the latter defined as a spatially uniform convection of the 
velocity field, varying randomly from realization to realization) has been 
analysed in detail (Kraichnan 1964a).  We wish now to examine how this failing 
shows up in the model amplitude equation (2.3). A random Galilean transforma- 
tion applied to (2.1) affects the phases of the Fourier amplitudes, and consequently 
makes smaller the fall-off times of the Eulerian averages U ( k ,  t, t ’) and G(k,  t ,  t ’ )  as 
functions of t - t’. But simultaneous triple correlations among interacting triads 
of wave-numbers are unaffected by the random convection, so that energy 
transfer is invariant. Random Galilean transformation on (2.3) induces qualita- 
tively similar changes in the difference-time dependence of U(k,  t, t’) and G(k,  t, t ’ ) ,  
but simultaneous triple correlations, and energy transfer, are not invariant. Two 
related properties are responsible for this. Pirst, the quantities &(k, t )  and [:,(k, t )  
are strictly random variables, statistically independent for different k values. In  
distinction from u,(k, t ) ,  these functions cannot carry the higher statistical corre- 
lations associated with random coherent convection of the turbulent velocity 
field. Secondly, the induced change in G(k ,  t ,  s) and U(q,  t ,  s), as functions oft - s, 
affects the contribution to q ( k , t , s )  from each interacting triad k , p , q  which 
enters (2.6). This, in turn, affects the energy transfer associated with each triad. 

3. An almost-Markovian model amplitude equation 
The Lagrangian-history direct-interaction energy balance equation differs 

from (2.9) in that the integrals back in time over Eulerian time-displaced 
covariances are replaced by integrals back along the trajectories of fluid elements. 
In this way, spurious effects of convective dephasing on the energy transfer are 
eliminated. The procedure is a hybridization of the original direct-interaction 
approximation; Lagrangian quantities are introduced a posteriori into an 
Eulerian statistical equation. The author, and several other workers, have 
searched unsuccessfully for a corresponding alteration of (2.3), which would 
provide a model representation of the Lagrangian-history direct-interaction 
equations. The attempts appear to fail because, in contrast to a covariance, in 
which just one of the factors averaged over can be changed from Eulerian to 
Lagrangian, an amplitude equation must be for either one field or the other. The 
almost-Markovian Eulerian model amplitude equation, to be described now, 
restores the freedom needed for alterations that remove convective dephasing 
effects from the energy transfer. This is done a t  the expense of ending with a 
qualitatively less faithful representation of time-displaced covariances. 

Instead of (2.3), consider the model equation, 

[a/at + vk2 +q(k, t ) ]  t )  = qi(k, t )  t ) ,  (3.1) 
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where 

Here w(t) is a white-noise process, 

(w(t) w(t’)) = 26(t - t’), (3.4) 

U(q,t)  = U(q,t , t) ,  and we continue to impose (2.5). The quantity ekpq(t) is a 
so-far undetermined characteristic memory time for the energetic interaction of 
wave-numbers k, p and q. Its presence takes the place of the explicit integration 
over history which occurs in (2.3). 

Equation (3.1) gives the Green’s function, energy, and time-displaced covari- 
ance equations, 

[a/at + vk2 + ~ ( k ,  t ) ]  G(k,  t ,  t’) = 0 (t 2 t’), 

[apt + Vk2+?#,  t ) ]  U ( k ,  t ,  t’) = 0 (t 2 t ’ ) ,  

(3.5) 

(3.6) 

[ap t  + 2 v ~ +  27(k, t ) ]  u ( k ,  t )  = 2z(k, t )  + 2nk akpqekpq(t) u ( p ,  t )  u(q, qpqapaq. 
(3.7) 

(3.8) 

In a statistically steady state, the direct-interaction energy equation (2.9) 

!I* 
From (3.5) and (3.6), we have 

U ( k ,  t, t’) = G(k,  t, t’) U(k ,  t’) ( t  2 t’). 

takes precisely the form (3.7) with 

(Kraichnan 1964). In  view of (3.8), we therefore reproduce the form of the steady- 
state direct-interaction energy transfer if we complete the present equations with 

(3.10) 

This does not mean, of course, that we get the same values for G(k ,  t ,  s) as in the 
steady-state direct-interaction equations. 

Equation (3.5) implies G(k,  t ,  t’) 2 0, so that (3.10) ensures Bkpq(t) 2 0. This is 
a necessary condition for (3.3) to make sense. We may note that any choice of 
O,,(t) gives conservation of energy, while any choice symmetric in all three 
indices gives equipartition in absolute statistical equilibrium. Equation (3.8), 
which holds in general for the present model, is true for the direct-interaction 
approximation (and for the exact dynamics as well) only in absolute equilibrium. 
In a dissipative steady state (Y and Z not zero), the direct-interaction equations 
give G(k ,  t ,  t‘) =k r(k,  t ,  t‘). 

The direct interaction approximation gives a U(k,  t )  whose Taylor expansion 
in powers oft agrees with that of the exact U(k ,  t )  through the term in t3, provided 
that all triple correlations vanish a t  t = 0. This is true also for the almost- 
Markovian model if (3.10) is taken. If an ordering parameter is placed before the 
non-linear term in the Navier-Stokes equation (that is, Pijm(k) replaced by 
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hpZi,(k)), U(k ,  t ,  t’) is an even function of h provided that all odd initial corre- 
lations vanish. The direct-interaction approximation gives U(k ,  t ,  t ’ )  correctly 
through the term in h2, if U is expanded in powers of h (essentially a Reynolds 
number expansion). The almost-Markovian model with (3.10) has the much more 
restricted property of giving U ( k ,  t )  correctly through the term in h2 in a statisti- 
cally steady state supported by a forcing field fi that is white noise in time. The 
restriction on fi (which we have assumed in the preceding) makes (3.8) true for 
the zeroth-order term in the h expansion of the exact U .  

A general deficiency of the almost-Markovian model is that it gives a qualita- 
tively incorrect behaviour of U ( k ,  t ,  t‘) and G(k,  t ,  t‘), as a function of t - t ’ ,  for 
small t- t‘ ,  unless t‘ = 0. This appears to be an unavoidable consequence of 
replacing (2.3) by a Langevin equation, and shows up most clearly in the statisti- 
cally steady state of absolute equilibrium (v and 2 zero, truncation in k space to 
keep energy contained). Then (3.5) and (3.6) give G(k ,  t ,  t ’ )  and U(k,  t ,  t ’ )  a finite 
slope at  t = t‘, while the exact functions exhibit zero slope. 

Differentiation of (3.10) and use of (3.5) gives 

dO,,(t)/dt = 1- [v(k2+P2+!12)+r(JC,t) +r(P,t)+r(4,t)10kp*(t) ,  (3.11) 

and (3.10) gives ek,,(o) = 0. Thus, in contrast to the irreducible integro- 
differential equations of the direct-interaction approximation, the present model 
leads to a closed set of ordinary first-order differential equations in time, involving 
only U ( k , t ) ,  r ( k , t )  and Okpq(t) .  These equations are (3.2)) (3.7) and (3.11). 

In  a statistically steady state, ~ ( k ,  t )  = ~ ( k )  and (3.1 1) gives 

e,, = l/[v(k2+P2+42) + r ( 4  +T(P) +m1* (3.12) 

The result is identical with Edwards’s (1964) ‘ time-independent ’ theory. Thus, 
the present formulation may be regarded as extending Edwards’s theory to 
non-steady states, and providing it with a model representation. 

The model defined by (3.1)-(3.4) and (3.10) is still not invariant to random 
Galilean transformation. Since qs(k, t )  is now a white noise in time, there can be 
no direct effect of random uniform convection on the frequency spectrum, or 
correlation time, of qi(k, t ) .  However, the qualitative effects on the difference- 
time dependence of G(k,  t ,  t’) and U(k ,  t ,  t ‘ )  are similar to those for the direct- 
interaction model. Thus, Bkpp( t ) ,  and the contribution of each triad interaction 
to ~ ( k ,  t, s), are still affected, and, consequently, so is the energy transfer. 

4. Galilean-invariant modification 
An almost-Markovian analogue of the Lagrangian-history direct-interaction 

approximation can be constructed by first setting up the direct-interaction 
equations for the ‘generalized velocity field ’ u,(k, tit’) (Kraichnan 1965). Then 
changes can be made similar to those which give (3.1)-(3.3), and, finally, Okpp( t )  

can be taken in a form like (3.10), but with Lagrangian rather than Eulerian 
Green’s functions in the integral. The freedom of choice of #kpq in the almost- 
Markovian models allows many ways to do this, in fact, whereas, in the original 
Lagrangian-history theory, the modifications of the direct-interaction equations 
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were highly constrained by invariance properties. This lack of uniqueness suggests 
that the simplest possible way of eliminating spurious convection effects should 
be sought. 

The model to be described now originates with the observation that advection 
does not directly decorrelate the Lagrangian velocity, since the particle accelera- 
tion is wholly a response to pressure, viscous force and external stirring. How, 
then, can the decorrelating effect of pressure forces be expressed in a purely 
Eulerian formulation? That is, how can we isolate, from advection effects, the 
distortion of the Eulerian velocity field by pressure? We cannot simply throw 
out the advection term, since then there would be no pressure forces generated. 
Instead, we can reverse the question and ask what the pressure forces prevent; 
what would happen if pressure were switched off. Non-uniform advection in the 
absence of pressure would, of course, distort an initially solenoidal velocity field 
so that it developed a longitudinal part, or compressive component. With 
pressure present, the kinetic energy that otherwise would be converted into the 
compressive field appears instead as a distortion in shape and direction of the 
solenoidal field. This suggests that we take, as a measure of the distorting effect 
of pressure, the rate at  which advection would induce interplay between solenoidal 
and compressive components with pressure absent. 

The simplest formal expression of the proposal just stated appears to be the 
following. Let vi(k, t )  be a vector field subject to viscous damping and advected 
by a solenoidal velocity field Gi(k, t )  according to 

(a/at + vk2) Vi(k, t )  = - i  ‘c km22,(q, t )  v&, t ) ,  (4.1) 
p+q=k 

where we use qm&(q, t )  = 0. The solenoidal and compressive parts of vui are 

@(k,  t )  = P,,(k) vj(k, t ) ,  $(k, t )  = IIij(k) v,(k, t ) ,  (4.2) 

where IIij = kikj /k2.  We now retain on the right-hand side of (4.1) only that part 
which represents interaction of vs and vc; that is, we throw out the terms coupling 
vs and vc to themselves. The result is 

The interaction terms in (4.3) and (4.4) conserve 

k 

An almost-Markovian model equation can now be constructed from (4.3) and 
(4.4), in the same way that the model of $3 is constructed from the Navier- 
Stokes equation. The average Green’s-function tensors for v S  and vc have the 
form, 

} (4.5) 
Gk(k, t ,  1 ‘ )  = P,(k)  P ( k ,  t ,  t f ) ,  

GS(k,t’ , t’)  = 1, 

G$(k, t ,  t ’ )  = Il,(k) GC(k, t ,  t f ) ,  

GC(k, t ‘ , t ’ )  = 1. 
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The model equations for P and Gc are 

[a/at + vk2 + f(k, t ) ]  Gs(k, t ,  t') = 0, 

[a/at + vk2 +qC(k,  t ) ]  GC(k, t ,  t ' )  = 0, 

where 

and 
Pi 

with a&, = + ( I  -y2) ( 1 - 9 ) .  (4.9) 

In (4.7), we have taken $(p, t )  = U(p, t )  so as to make the modal intensities of the 
so far unspecified fi field the same as those of the Navier-Stokes field u. In  (4.8), 
we take 

so as to tie the decorrelation behaviour of the D field to that of the field vs. This 
hybrid assignment of properties to the fi field takes the place of the hybridization 
of statistical equations inherent in the Lagrangian-history direct-interaction 
procedure. To complete the set of equations, we finally replace (3.10) by 

6rc,,(t) = G S ( k  t ,  8 )  @(P, t ,  8)  GS(q, t ,  8) ds, (4.10) s," 
thereby assuming that the CS function may be taken as a measure of the distor- 
tions that limit the build up of energy-transferring triple correlations. 

The geometrical coefficient bfPQ arises, of course, in the direct-interaction 
equations for Gs and GC, and is carried to  the almost-Markovian equations, as 
in 8 3. The factor of 2 in the equation (4.7) for qc(k, t )  arises because each com- 
pressive degree of freedom interacts with two transverse degrees of freedom for 
any wave-vector. In two-dimensional isotropic turbulence, there is only one 
transverse degree of freedom, and the corresponding results are 

GS(k,  t, t ' )  = GG(k, t ,  t ' ) ,  

with qs(k,  t )  = y C ( k , t )  = 4k2 (1 - x 2 ) - ~ b f p q O f p q ( t )  U(p,t)dpdp, (4.11) 

where bzpq is the same and kinetic energy per unit mass is 

SS, 
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The preceding equations were obtained by a succession of inductive steps, and 
it would be pointless to try to defend the derivation strongly. In  common with 
many ideas associated with inertial dynamics, the physical concepts to which 
we appealed resist precise formulation. However, it is easy to demonstrate the 
self-consistency of the final results. The energy equation is unaltered in form 
from § 3, so that conservation of energy is not lost; moreover, the symmetry of 
Bkpp(t)  in its indices assures equipartition in absolute statistical equilibrium. 
Equation (4.6) shows that P and Gc are always positive, so that Bkpp(t)  and 
Bkcp,(t) are always positive. Also, (4.9) gives btpq 2 0 (in distinction to bkpp), andit 
follows that P ( k ,  t ,  s) and GC(k, t ,  s) are monotonically decreasing functions oft. 

Invariance of the energy transfer in the final equations to random Galilean 
transformation follows directly from the fact that addition of a uniform velocity 
field to 0 makes no contribution to the right-hand sides of (4.3) and (4.4). In  the 
final equations, the invariance shows up in the fact that, for q 4 k ,  we have 
bgpq - &q2k2(  1 -y2), so that the contribution of small q to (4.7) is proportional to 
the mean-square shear in the low wave-numbers, rather than, as in (3.2), to the 
kinetic energy. 

The present equations reproduce the expansion of the exact U ( k ,  t )  in powers 
of t  and in powers of the ordering parameter h through the same orders as does 
the model of Q 3. 

The model amplitude equation defined by (3. I)-( 3.4) still belongs to the present 
set of statistical equations ((3.2), (3.7) (4.7), (4.12), (4.13)) in the sense that it 
yields (3.7). Although convective dephasing effects of large scales have been 
removed from the energy transfer, q(k, t )  is still the order of the reciprocal of the 
convective dephasing time for wave-number k, and the model ui(k, t )  still displays 
characteristic fluctuation times appropriate to the Eulerian velocity field. These 
facts are consistent, because the akp, and b,, terms in (3.7) give a cancellation of 
the contributions of the energy-containing range to the energy budget at high k. 

5. Rescaling of memory times 
The direct-interaction equations are fully determined from the Navier-Stokes 

equation, so that there is no place for adjustable parameters. This is not true, 
however, for the Galilean-invariant almost-Markovian model developed in § 4. 
Assuming that the physical reasoning is valid, the characteristic times obtained 
from (4.3) and (4.4) are at best a memure of the build-up times for triple corre- 
lations in the Navier-Stokes system. The model is equally plausible if we scale 
the characteristic times by putting a constant factor 9, of order one, in the right- 
hand sides of (4.3) and (4.4). The value of g could be fixed by seeking a best fit of 
the model to some aptly chosen computer experiment or laboratory data. How- 
ever, we can also fix g, wholly within the framework of derivation of the model, 
by requiring a, fit to the original direct-interaction results in a case where the 
latter can reasonably be expected to be good. 

Since the worst failing of the direct-interaction approximation appears to be 
the representation of the interaction of widely different scales, we choose, for 
this purpose, the dynamical system obtained by eliminating from the Navier- 
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Stokes equation all wave-vectors that do not lie in a thin spherical shell of radius 
k. Then all the modes which remain are dynamically identical. For the inter- 
actions within the shell, we have b,, M b,,, = #, bfpg M bfkk = & = $bkl<,. Con- 
sider the state of absolute equilibrium (v and 2 zero), in which (3.8) holds for the 
direct-interaction functions and (3.10) is the form of Okpg in the direct-interaction 
energy balance equation. Suppose now that energy is very slowly fed into some 
of the modes in the shell by weak external forces. Then the rate at  which this 
energy is distributed to the rest of the modes is determined by the absolute- 
equilibrium value of O,,,. 

In the equilibrium state, all the quantities in (2.6) depend only on time 
difference, and this equation reduces to the form, 

7( t  - 8 )  = Kb,,,[G(t - 412, 
where ~ ( t  - s) = ~ ( k ,  t, s) and G(t  - s) = G(k ,  t ,  8 ) .  The parameter K depends on the 
thickness of the shell and the mode intensity U ( k , t ) .  For convenience, let us 
choose the latter so that K = Q and (2.8) reduces to 

dG(t)/dt = - [G( t -s )] ’G(~)ds  (G(O) = 1). J: 
Equation (5.1) is easily solved numerically. For small t the solution resembles 
e-t2’2, but it goes slightly negative for 2.5 < t < 5.5,  then becomes positive again, 
and eventually dies in exponential fashion. The numerical solution gives for 
8,,,(oo) the value 

eDI = 0.72335. 

The scaling factor g inserted in (4.3) and (4.4) puts a factor g2 in the right-hand 
sides of (4.7) and (4.11), and otherwise leaves (4.5) to (4.14) unchanged. With the 
same normalization that gives (5.1)) we find that (4.7), (4.12) and (4.13) reduce to 

vS = 2g2BG, rC = 9g2BG, OG = 1/ (27s+~c) ,  8 = 1 / ( 3 4 ) .  ( 5 4  

7s = &3tg, p = 275 e G  = i /(3ig),  e = $eG,  (5.3) 

The solution is 

so that the value of 8 matches the direct-interaction value if 

This choice of g then assures that the model of $ 4  gives the same results as the 
direct-interaction approximation for the energy flow associated with slowly 
varying, small deviations from absolute equilibrium in the spherical shell. It is 
interesting, but apparently not significant, that thevalue of gis so close to one. It 
is significant for the plausibility of the model, however, that this same value of 
g gives a value for Kolmogorov’s constant that agrees fairly well with experiment. 
The inertial-range applications of the model are discussed in an accompanying 
paper. 
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6.  Discussion 
The almost-Markovian model of $ 4  offers the advantages, over the direct- 

interaction approximation, of incorporating invariance of energy transfer to 
random Galilean transformation and of being much simpler to integrate. It has 
the advantages, over the Lagrangian-history direct-interaction approximation, 
of simplicity and representation by a model amplitude equation. As noted 
already, it has these virtues at the expense of giving a qualitatively unfaithful 
representation of time-displaced covariances for small time differences. The 
almost Markovian model is perhaps best regarded as a tool for following the 
evolution of spectral intensities only, with the other functions occurring in the 
equations considered as intermediate quantities. 

Even if only energy transfer is considered, the almost-Markovian models of 
both $ $ 3  and 4 display differences in behaviour from the direct-interaction 
approximation in the portrayal of transient effects, and these differences are of 
a kind which cannot be removed by a simple rescaling like that carried out in $5. 
In general, current energy transfer according to the direct-interaction equations 
is more influenced by the past history of energy disequilibrium than according to 
the almost-Markovian models. A n  indication of this is the damping-with-memory 
that appears explicitly in (2.3). As a consequence, strong initial disequilibrium 
tends to produce overshoot effects in the direct-interaction energy transfer which 
are absent in the almost-Markovian models. It is unclear to what extent this is 
good or bad, from the point of view of reproducing exact dynamical behaviour. 
On the other hand, if a sudden transient change in the spectrum U ( k ,  t )  is produced 
(by external forces) at a time t, > 0, the almost-Markovian models give a clearly 
artificial initial response of the energy transfer. In  both the direct-interaction 
and exact dynamics, the initial change in energy transfer is cc ( t  - tl) if the per- 
turbation velocity field is initially uncorrelated with the existing field. In  the 
almost-Markovian models, there is a discontinuity in the transfer function, be- 
cause transfer of both the existing and perturbation spectrum is indiscriminately 
controlled by the functions Okpq(t l ) .  Nevertheless, the model of $ 4  appears to give 
qualitatively correct decay times for the spectrum transient, while the direct- 
interaction approximation and the model of $ 3  give qualitatively wrong decay 
times at  high wave-numbers because of the lack of Galilean invariance. 

The saving in machine computation time offered by the almost-Markovian 
models is very impressive. In  a direct-interaction computation of spectrum 
evolution, most of the computation effort is in computing time-displaced func- 
tions, and the computer time increases as the cube of the time of evolution, unless 
integrals over history are truncated. In the model of $ 4, most of the computation 
time is taken up by computing the energy equation, with (4.12) and (4.13) taking 
comparable but somewhat less time because they are algebraically simpler than 
the energy equation. The total computation time is proportional to time of 
evolution. Computation time for the almost-Markovian models is, in fact, only 
slightly greater than for the single-time quasi-normal approximation (Proudman 
& Reid 1954). 

The split of a vector field into solenoidal and longitudinal parts is possible in 
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any geometry, once the boundary conditions are fixed. A consequence is that 
the model of 9 4 can be generalized to inhomogeneous flows with non-zero mean 
fields. In this respect, it offers strong advantages over the simpler procedure of 
fixing ekPn in isotropic turbulence by dimensional arguments, whose generaliza- 
tion to other cases is then unclear. The model can also be extended in a nice way 
to handle spectral transport of a passive scalar. We carry out the direct-interaction 
approximation for the problem and construct an almost-Markovian model in 
analogy to 5 3. Then we make a correspondence between the compressive part vc 
of the test field and the gradient field of the scalar. Thus, the very same Gc(k, t ,  s) 
as in § 4 is used to measure the distortion of the scalar field. This procedure is free 
of a deficiency of the Lagrangian-history direct-interaction treatment of scalar 
transport, that was noted when the latter was first formulated (Kraichnan 1965, 
p. 596). In  the absence of molecular diffusivity, scalar density is constant along 
the particle trajectories, so that Lagrangian scalar correlations are unlikely t o  
provide a satisfactory measure of the distortions that limit transport. The almost- 
Markovian model may correct the over-estimates of scalar transport efficiency 
that have been found in computations of the Lagrangian-history direct-inter- 
action approximation (Kraichnan 1968). 

Interaction with C. E. Leith, J. R.!Herring, and S. A. Orszag has contributed 
greatly to this work. Exploration of the almost-Markovian models was suggested 
by a Markovianized version of the quasi-normal theory, constructed several 
years ago by Orszag. This work was supported by the Fluid Dynamics branch of 
the Office of Naval Research under Contract N 00014-67-C-0284. 
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